Analysis of self-organized criticality in Ehrenfest;s dog-flea model

dc.contributor.authorBakar B.
dc.contributor.authorTirnakli U.
dc.date.accessioned2019-10-27T08:35:54Z
dc.date.available2019-10-27T08:35:54Z
dc.date.issued2009
dc.departmentEge Üniversitesien_US
dc.description.abstractThe self-organized criticality in Ehrenfest's historical dog-flea model is analyzed by simulating the underlying stochastic process. The fluctuations around the thermal equilibrium in the model are treated as avalanches. We show that the distributions for the fluctuation length differences at subsequent time steps are in the shape of a q -Gaussian (the distribution which is obtained naturally in the context of nonextensive statistical mechanics) if one avoids the finite-size effects by increasing the system size. We provide clear numerical evidence that the relation between the exponent T, of avalanche size distribution obtained by maximum-likelihood estimation and the q value of appropriate q -Gaussian obeys the analytical result recently introduced by Caruso [Phys. Rev. E 75, 055101(R) (2007)]. This allows us to determine the value of q -parameter a priori from one of the well-known exponents of such dynamical systems. © 2009 The American Physical Society.en_US
dc.identifier.doi10.1103/PhysRevE.79.040103
dc.identifier.issn1539-3755
dc.identifier.issn1539-3755en_US
dc.identifier.issue4en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1103/PhysRevE.79.040103
dc.identifier.urihttps://hdl.handle.net/11454/27312
dc.identifier.volume79en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofPhysical Review E - Statistical, Nonlinear, and Soft Matter Physicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleAnalysis of self-organized criticality in Ehrenfest;s dog-flea modelen_US
dc.typeArticleen_US

Dosyalar