On the core of weighted means of sequences
dc.contributor.author | Sezer, Sefa Anil | |
dc.contributor.author | Canak, Ibrahim | |
dc.date.accessioned | 2020-12-01T11:58:07Z | |
dc.date.available | 2020-12-01T11:58:07Z | |
dc.date.issued | 2020 | |
dc.department | Ege Üniversitesi | en_US |
dc.description.abstract | Let(p(n)) be a sequence of nonnegative numbers such that p(0)>0 and P-n:= Sigma(n)(k=0) pk. the sequence (t(n)) of n-th weighted means of a equence(u(n)) is defined by t(n):=1/P-n (k=0)Sigma(n)p(k)u(k) (n=0,1,2, ...). It is well-known from the Knopp's core theorem that K - core(t) subset of K-core(u) for every real sequence(u(n)). But the converse of this inclusion is not true in general. in this paper, we obtain sufficient conditions under which the converse inclusion holds. | en_US |
dc.identifier.doi | 10.1007/s13370-020-00831-z | |
dc.identifier.issn | 1012-9405 | |
dc.identifier.issn | 2190-7668 | |
dc.identifier.issn | 1012-9405 | en_US |
dc.identifier.issn | 2190-7668 | en_US |
dc.identifier.scopus | 2-s2.0-85090236818 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s13370-020-00831-z | |
dc.identifier.uri | https://hdl.handle.net/11454/61934 | |
dc.identifier.wos | WOS:000566306000001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Heidelberg | en_US |
dc.relation.ispartof | Afrika Matematika | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Core of a sequence | en_US |
dc.subject | Weighted mean method of summability | en_US |
dc.subject | Regularly varying sequence of positive index | en_US |
dc.title | On the core of weighted means of sequences | en_US |
dc.type | Article | en_US |