A New Approach to Van der Pol's Oscillator Problem

dc.contributor.authorKhan, Yasir
dc.contributor.authorMadani, M.
dc.contributor.authorYildirim, A.
dc.contributor.authorAbdou, M. A.
dc.contributor.authorFaraz, Naeem
dc.date.accessioned2019-10-27T21:35:51Z
dc.date.available2019-10-27T21:35:51Z
dc.date.issued2011
dc.departmentEge Üniversitesien_US
dc.description.abstractIn this paper, we will consider the Laplace decomposition method (LDM) for finding series solutions of nonlinear oscillator differential equations. The equations are Laplace transformed and the nonlinear terms are represented by He's polynomials. The solutions are compared with the numerical (fourth-order Runge-Kutta) solution and the solution obtained by the Adomian decomposition method. The suggested algorithm is more efficient and easier to handle as compared to the numerical method. The results illustrate that LDM is an appropriate method in solving the highly nonlinear equations.en_US
dc.identifier.doi10.5560/ZNA.2011-0036
dc.identifier.endpage624en_US
dc.identifier.issn0932-0784
dc.identifier.issn0932-0784en_US
dc.identifier.issue10.Noven_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage620en_US
dc.identifier.urihttps://doi.org/10.5560/ZNA.2011-0036
dc.identifier.urihttps://hdl.handle.net/11454/45945
dc.identifier.volume66en_US
dc.identifier.wosWOS:000299194500006en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherVerlag Z Naturforschen_US
dc.relation.ispartofZeitschrift Fur Naturforschung Section A-A Journal of Physical Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLaplace Decomposition Methoden_US
dc.subjectOscillator Differential Equationen_US
dc.subjectHe's Polynomialsen_US
dc.titleA New Approach to Van der Pol's Oscillator Problemen_US
dc.typeArticleen_US

Dosyalar