Benchmarking algorithms for food localization and semantic segmentation
dc.contributor.author | Aslan, Sinem | |
dc.contributor.author | Ciocca, Gianluigi | |
dc.contributor.author | Mazzini, Davide | |
dc.contributor.author | Schettini, Raimondo | |
dc.date.accessioned | 2020-12-01T11:59:19Z | |
dc.date.available | 2020-12-01T11:59:19Z | |
dc.date.issued | 2020 | |
dc.department | Ege Üniversitesi | en_US |
dc.description.abstract | The problem of food segmentation is quite challenging since food is characterized by intrinsic high intra-class variability. Also, segmentation of food images taken in-the-wild may be characterized by acquisition artifacts, and that could be problematic for the segmentation algorithms. A proper evaluating of segmentation algorithms is of paramount importance for the design and improvement of food analysis systems that can work in less-than-ideal real scenarios. in this paper, we evaluate the performance of different deep learning-based segmentation algorithms in the context of food. Due to the lack of large-scale food segmentation datasets, we initially create a new dataset composed of 5000 images of 50 diverse food categories. the images are accurately annotated with pixel-wise annotations. in order to test the algorithms under different conditions, the dataset is augmented with the same images but rendered under different acquisition distortions that comprise illuminant change, JPEG compression, Gaussian noise, and Gaussian blur. the final dataset is composed of 120,000 images. Using standard benchmark measures, we conducted extensive experiments to evaluate ten state-of-the-art segmentation algorithms on two tasks: food localization and semantic food segmentation. | en_US |
dc.description.sponsorship | NVIDIA Corporation; project FooDesArt: Food Design Arte -L'Arte del Benessere, CUP (Codice Unico Progetto) [E48I16000350009]; POR FESR 2014-2020 (Programma Operativo Regionale, Fondo Europeo di Sviluppo Regionale -Regional Operational Programme, European Regional Development Fund) | en_US |
dc.description.sponsorship | We gratefully acknowledge the support of NVIDIA Corporation with the donation of the K40, Titan Xp, and Titan X GPU cards used for this research. This work is published in the context of the project FooDesArt: Food Design Arte -L'Arte del Benessere, CUP (Codice Unico Progetto -Unique Project Code): E48I16000350009 -Call "Smart Fashion and Design", cofunded by POR FESR 2014-2020 (Programma Operativo Regionale, Fondo Europeo di Sviluppo Regionale -Regional Operational Programme, European Regional Development Fund). | en_US |
dc.identifier.doi | 10.1007/s13042-020-01153-z | |
dc.identifier.endpage | 2847 | en_US |
dc.identifier.issn | 1868-8071 | |
dc.identifier.issn | 1868-808X | |
dc.identifier.issn | 1868-8071 | en_US |
dc.identifier.issn | 1868-808X | en_US |
dc.identifier.issue | 12 | en_US |
dc.identifier.scopus | 2-s2.0-85086879236 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 2827 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s13042-020-01153-z | |
dc.identifier.uri | https://hdl.handle.net/11454/62229 | |
dc.identifier.volume | 11 | en_US |
dc.identifier.wos | WOS:000543043400001 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Heidelberg | en_US |
dc.relation.ispartof | International Journal of Machine Learning and Cybernetics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Benchmarking | en_US |
dc.subject | Convolutional neural network | en_US |
dc.subject | Food localization | en_US |
dc.subject | Food segmentation | en_US |
dc.title | Benchmarking algorithms for food localization and semantic segmentation | en_US |
dc.type | Article | en_US |