Power-Central Values and Engel Conditions in Prime Rings with Generalized Skew Derivations

dc.contributor.authorArgac, N.
dc.contributor.authorDe Filippis, V
dc.date.accessioned2021-05-03T20:21:35Z
dc.date.available2021-05-03T20:21:35Z
dc.date.issued2021
dc.departmentEge Üniversitesien_US
dc.description.abstractLet R be a prime ring of characteristic different from 2 with extended centroid C, n >= 1 a fixed positive integer, F, G : R -> R two non-zero generalized skew derivations of R. (I) If (F(x)x)(n) is an element of C for all x is an element of R, then the following hold: (a) if F is an inner generalized skew derivation, then either R subset of M-2(C) or R is commutative; (b) if F is not an inner generalized skew derivation, then R is commutative. (II) If [F(x)x, G(y)y](n) = 0 for all x, y is an element of R, then R is commutative unless when char(R) = p > 0, G is an inner generalized skew derivation and R subset of M-2(C).en_US
dc.identifier.doi10.1007/s00009-021-01714-8
dc.identifier.issn1660-5446
dc.identifier.issn1660-5454
dc.identifier.issn1660-5446en_US
dc.identifier.issn1660-5454en_US
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85102785549en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1007/s00009-021-01714-8
dc.identifier.urihttps://hdl.handle.net/11454/69384
dc.identifier.volume18en_US
dc.identifier.wosWOS:000631644900005en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Basel Agen_US
dc.relation.ispartofMediterranean Journal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPrime ringen_US
dc.subjectgeneralized skew derivationen_US
dc.subjectautomorphismen_US
dc.subjectright Martindale quotient ringen_US
dc.titlePower-Central Values and Engel Conditions in Prime Rings with Generalized Skew Derivationsen_US
dc.typeArticleen_US

Dosyalar