A Jacobi elliptic function method for nonlinear arrays of vortices

Küçük Resim Yok

Tarih

2012

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Indian Assoc Cultivation Science

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Arrays of vortices are considered for two-dimensional inviscid flows when the functional relationship between the stream function and the vorticity is hyperbolic sine, exponential, sine, and power functions. The Jacobi elliptic function method with symbolic computation is extended to these nonlinear equations for constructing their doubly periodic wave solutions. The different Jacobi function expansions may lead to new Jacobi doubly periodic wave solutions, triangular periodic solutions and soliton solutions. In addition, as an illustrative sample, the properties for the Jacobi doubly periodic wave solutions of the nonlinear equations are shown with some figures.

Açıklama

Anahtar Kelimeler

Nonlinear arrays of vortices, Jacobi elliptic function method, Jacobi doubly periodic wave solution, Sinh-Poisson equation, Liouville equation, Sine-Poisson equation

Kaynak

Indian Journal of Physics

WoS Q Değeri

Q2

Scopus Q Değeri

Q3

Cilt

86

Sayı

12

Künye