A new approach to fuzzy wavelet system modeling

dc.contributor.authorKaratepe, E
dc.contributor.authorAlci, M
dc.date.accessioned2019-10-27T19:22:18Z
dc.date.available2019-10-27T19:22:18Z
dc.date.issued2005
dc.departmentEge Üniversitesien_US
dc.description.abstractIn this paper, we propose simple but effective two different fuzzy wavelet networks (FWNs) for system identification. The FWNs combine the traditional Takagi-Sugeno-Kang (TSK) fuzzy model and discrete wavelet transforms (DWT). The proposed FWNs consist of a set of if-then rules and, then parts are series expansion in terms of wavelets functions. In the first system, while the only one scale parameter is changing with it corresponding rule number, translation parameter sets are fixed in each rule. As for the second system, DWT is used completely by using wavelet frames. The performance of proposed fuzzy models is illustrated by examples and compared with previously published examples. Simulation results indicate the remarkable capabilities of the proposed methods. It is worth noting that the second FWN achieves high function approximation accuracy and fast convergence. (c) 2005 Elsevier Inc. All rights reserved.en_US
dc.identifier.doi10.1016/j.ijar.2005.06.003
dc.identifier.endpage322en_US
dc.identifier.issn0888-613X
dc.identifier.issn1873-4731
dc.identifier.issn0888-613Xen_US
dc.identifier.issn1873-4731en_US
dc.identifier.issue3en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage302en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijar.2005.06.003
dc.identifier.urihttps://hdl.handle.net/11454/39073
dc.identifier.volume40en_US
dc.identifier.wosWOS:000233796700009en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofInternational Journal of Approximate Reasoningen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectfuzzy waveleten_US
dc.subjectfuzzy system modelsen_US
dc.subjectlearningen_US
dc.subjectwavelet transformen_US
dc.titleA new approach to fuzzy wavelet system modelingen_US
dc.typeArticleen_US

Dosyalar