An alternative proof of a Tauberian theorem for Abel summability method

dc.contributor.authorÇanak I.
dc.contributor.authorTotur U.
dc.date.accessioned2019-10-26T21:19:34Z
dc.date.available2019-10-26T21:19:34Z
dc.date.issued2016
dc.departmentEge Üniversitesien_US
dc.description.abstractUsing a corollary to Karamata's main theorem [Math. Z. 32 (1930), 319-320], we prove that if a slowly decreasing sequence of real numbers is Abel summable, then it is convergent in the ordinary sense. © 2016, Proyecciones Journal of Mathematics.en_US
dc.identifier.doi10.4067/S0716-09172016000300001
dc.identifier.endpage244en_US
dc.identifier.issn0716-0917
dc.identifier.issn0716-0917en_US
dc.identifier.issue3en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage235en_US
dc.identifier.urihttps://doi.org/10.4067/S0716-09172016000300001
dc.identifier.urihttps://hdl.handle.net/11454/16663
dc.identifier.volume35en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherUniversidad Catolica del Norteen_US
dc.relation.ispartofProyeccionesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAbel summabilityen_US
dc.subjectSlowly decreasing sequencesen_US
dc.subjectTauberian conditions and theoremsen_US
dc.titleAn alternative proof of a Tauberian theorem for Abel summability methoden_US
dc.typeArticleen_US

Dosyalar