A variation of distance domination in composite networks

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let V be the set of vertex of a graph G. The set S is a dominating set, being a subset of the set V, if every vertex in the set V is in the set S, or if it is neighbor of a vertex in the set S. The number of elements of the set S with the least number of elements is the dominating number of graph G. In this study, we have worked on a type of dominating called porous exponential domination. In this new parameter, while the distance between vertex s and vertex v grows this weight value reduces exponentially. If all vertices in S dominate all vertices of G a with a total weight of at least 1, the set S is named as a porous exponential dominating set of graph G. The cardinality of the set with the least number of elements of the obtained porous exponential domination sets is defined as the porous exponential domination number of graph G. In this paper we compute the porous exponential domination number of the R - graphs under corona and join product.

Açıklama

Anahtar Kelimeler

Graph Operations, Graph Theory, Porous Exponential Domination, R-Corona, R-Join

Kaynak

Numerical Methods For Partial Differential Equations

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

40

Sayı

2

Künye