A variation of distance domination in composite networks
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Wiley
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Let V be the set of vertex of a graph G. The set S is a dominating set, being a subset of the set V, if every vertex in the set V is in the set S, or if it is neighbor of a vertex in the set S. The number of elements of the set S with the least number of elements is the dominating number of graph G. In this study, we have worked on a type of dominating called porous exponential domination. In this new parameter, while the distance between vertex s and vertex v grows this weight value reduces exponentially. If all vertices in S dominate all vertices of G a with a total weight of at least 1, the set S is named as a porous exponential dominating set of graph G. The cardinality of the set with the least number of elements of the obtained porous exponential domination sets is defined as the porous exponential domination number of graph G. In this paper we compute the porous exponential domination number of the R - graphs under corona and join product.
Açıklama
Anahtar Kelimeler
Graph Operations, Graph Theory, Porous Exponential Domination, R-Corona, R-Join
Kaynak
Numerical Methods For Partial Differential Equations
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
40
Sayı
2