Fourth-order m-point boundary value problems on time scales
dc.contributor.author | Karaca I.Y. | |
dc.contributor.author | Ozlem Y. | |
dc.date.accessioned | 2019-10-26T22:36:19Z | |
dc.date.available | 2019-10-26T22:36:19Z | |
dc.date.issued | 2010 | |
dc.department | Ege Üniversitesi | en_US |
dc.description.abstract | Let T be a time scale with [a, b] C T. We establish criteria for existence of one or more than one positive solutions of the non-eigenvalue problem (0.1) {y?4(t) y?2 (? (t, y(t)), t?(a,b) ? T, (0.1) { y(a) = ? l=1 m-2 a1y (?i), (y?2(b) = ? l=1 m-2b1y (?i), (0.1) { y?2 (a) = ?? l=1 m-2 a1y?2 (?i), y?2(a2(b)) = ? i=1 m-2 biy?2 (?i), where ? € (a,b) ai, bi ? [0, ?) (for i € { 1, 2, ..., m-2}) are given constants. Later, we consider the existence and multiplicity of positive solutions for the eigenvalue problem y?2(t) - q(t)y?2(?(t)) = ?f (t,y(t)) with the same boundary conditions. We shall also obtain criteria which lead to nonexistence of positive solutions. In both problems, we will use Krasnoselskii fixed point theorem. © Dynamic Publishers, Inc. | en_US |
dc.identifier.endpage | 270 | en_US |
dc.identifier.issn | 1056-2176 | |
dc.identifier.issn | 1056-2176 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 249 | en_US |
dc.identifier.uri | https://hdl.handle.net/11454/19869 | |
dc.identifier.volume | 19 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Dynamic Systems and Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Fourth-order m-point boundary value problems on time scales | en_US |
dc.type | Article | en_US |