GENERALIZED SKEW DERIVATIONS WITH INVERTIBLE VALUES ON MULTILINEAR POLYNOMIALS
dc.contributor.author | Demir, C. | |
dc.contributor.author | Albas, E. | |
dc.contributor.author | Argac, N. | |
dc.contributor.author | De Filippis, V. | |
dc.date.accessioned | 2019-10-27T21:33:55Z | |
dc.date.available | 2019-10-27T21:33:55Z | |
dc.date.issued | 2012 | |
dc.department | Ege Üniversitesi | en_US |
dc.description.abstract | Let R be a prime ring, f(X-1, ..., X-n) a multilinear polynomial which is not central-valued on R, and G a nonzero generalized skew derivation of R. Suppose that G(f(x(1), ..., x(n))) is zero or invertible for all x(1), ..., x(n) is an element of R. Then it is proved that R is either a division ring or the ring of all 2 x 2 matrices over a division ring. This result simultaneously generalizes a number of results in the literature. | en_US |
dc.identifier.doi | 10.1080/00927872.2012.689393 | |
dc.identifier.endpage | 4059 | en_US |
dc.identifier.issn | 0092-7872 | |
dc.identifier.issn | 0092-7872 | en_US |
dc.identifier.issue | 11 | en_US |
dc.identifier.startpage | 4042 | en_US |
dc.identifier.uri | https://doi.org/10.1080/00927872.2012.689393 | |
dc.identifier.uri | https://hdl.handle.net/11454/45478 | |
dc.identifier.volume | 40 | en_US |
dc.identifier.wos | WOS:000309120700006 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Inc | en_US |
dc.relation.ispartof | Communications in Algebra | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Extended density theorem | en_US |
dc.subject | Generalized skew derivations | en_US |
dc.subject | Prime rings | en_US |
dc.subject | Skew derivations | en_US |
dc.title | GENERALIZED SKEW DERIVATIONS WITH INVERTIBLE VALUES ON MULTILINEAR POLYNOMIALS | en_US |
dc.type | Article | en_US |