Robust Prescribed Time Control of Euler–Lagrange Systems
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
IEEE-Inst Electrical Electronics Engineers Inc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This article aims to develop a robust prescribed time controller for precise trajectory tracking for uncertain Euler-Lagrange systems with unknown time-varying disturbances without prior knowledge of their upper bounds. The control strategy involves utilizing a scaled transformation function to map the standard error system to a scaled error system. The presented controller is developed based on the scaled error system, incorporating state-dependent control gains and yielding a model-free controller structure. Distinguishing from previous methods, the designed controller takes a different approach by avoiding the direct multiplication of feedback terms with the estimated inertia matrix. The developed strategy mitigates the adverse effects of mismatches between the actual and estimated inertia matrices. A novel Lyapunov-based stability analysis is employed to establish fixed-time input-to-state stability within the prescribed time and to ensure the convergence of error signals to the origin. Experimental validation on a three-degree-of-freedom planar robot arm confirms the effectiveness of the proposed controller.
Açıklama
Anahtar Kelimeler
Vectors, Nonlinear Systems, Control Design, Upper Bound, Manipulator Dynamics, Uncertainty, Transmission Line Matrix Methods, Lyapunov Methods, Prescribed Time Control, Robot Manipulators, Robust Control
Kaynak
IEEE Transactions on Industrial Electronics
WoS Q Değeri
N/A