A NOTE ON CERTAIN CENTRAL DIFFERENTIAL IDENTITIES WITH GENERALIZED DERIVATIONS

dc.contributor.authorArgac, Nurcan
dc.contributor.authorDe Filippis, Vincenzo
dc.date.accessioned2019-10-27T21:55:58Z
dc.date.available2019-10-27T21:55:58Z
dc.date.issued2012
dc.departmentEge Üniversitesien_US
dc.description.abstractLet R be a noncommutatiye prime ring of characteristic different from 2 with right Utumi quotient ring U and extended centroid C, I a nonzero right ideal of R. Let f(x(1), . . ., x(n)) be a non-central multilinear polynomial over C, m >= 1 a fixed integer, a a fixed element of R, G a non-zero generalized derivation of R. If aG(f(r(1), . . ., r(n)))(m) is an element of Z(R) for all r(1), . . ., r(n) is an element of I, then one of the following holds: (1) aI = aG(I) = (0); (2) G(x) = qx, for some q is an element of U and aqI = 0; (3) [f (x(1), . . ., x(n)), x(n+1)]x(n+2) is an identity for I; (4) G(x) = cx + [q, x] for all x is an element of R, where c, q is an element of U such that cI = 0 and [q, I]I = 0; (5) dim(C)(RC) <= 4; (6) G(x) = alpha x, for some alpha is an element of C; moreover alpha is an element of C and f (x(1), . . ., x(n))(m) l is central valued on R.en_US
dc.identifier.endpage852en_US
dc.identifier.issn1303-5010
dc.identifier.issn1303-5010en_US
dc.identifier.issue6en_US
dc.identifier.startpage847en_US
dc.identifier.urihttps://hdl.handle.net/11454/48297
dc.identifier.volume41en_US
dc.identifier.wosWOS:000315845000007en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherHacettepe Univ, Fac Scien_US
dc.relation.ispartofHacettepe Journal of Mathematics and Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPrime ringsen_US
dc.subjectDifferential identitiesen_US
dc.subjectGeneralized derivationsen_US
dc.titleA NOTE ON CERTAIN CENTRAL DIFFERENTIAL IDENTITIES WITH GENERALIZED DERIVATIONSen_US
dc.typeArticleen_US

Dosyalar