Some Tauberian Theorems for Weighted Means of Double Integrals on R-+(2)

dc.contributor.authorFindik, Goksen
dc.contributor.authorCanak, Ibrahim
dc.contributor.editorCakalli, H
dc.contributor.editorKocinac, LDR
dc.contributor.editorHarte, R
dc.contributor.editorCao, J
dc.contributor.editorSavas, E
dc.contributor.editorErsan, S
dc.contributor.editorYildiz, S
dc.date.accessioned2019-10-27T09:47:43Z
dc.date.available2019-10-27T09:47:43Z
dc.date.issued2019
dc.departmentEge Üniversitesien_US
dc.descriptionInternational Conference of Mathematical Sciences (ICMS) -- JUL 31-AUG 06, 2018 -- Maltepe Univ, Istanbul, TURKEYen_US
dc.description.abstractLet p(x) and q(y) be nondecreasing continuous functions on [0, infinity) such that p(0) = q(0) = 0 and p(x), q(y) -> infinity as x, y -> infinity. For a locally integrable function f(x,y) on R-+(2) = [0, infinity) x [0, infinity), we denote its double integral by F(x,y) = integral(x)(0) integral(y)(0) f(t, s)dtds and its weighted mean of type (alpha, beta) by t(alpha,beta)(x,y) = integral(x)(0) integral(y)(0) (1- p(t)/p(x))(alpha)(1-q(s)/q(y))(beta) f(t, s)dtds where alpha > -1 and beta > -1. We say that integral(infinity)(0)integral(infinity)(0) f(t, s)dtds is integrable to L by the weighted mean method of type (alpha, beta) determined by the functions p(x) and q(x) if lim(x,y -> infinity) t(alpha,beta)(x, y) = L exists. We prove that if lim(x,y -> infinity )t(alpha,beta)(x, y) = L exists and t a p(x, y) is bounded on R-+(2) for some alpha > -1 and beta > -1, then lim(x,y -> infinity )t(alpha+h,beta+k)(x, y)= L exists for all h > 0 and k > 0. Finally, we prove that if integral(infinity)(0) integral(infinity)(0) f(t, s)dtds is integrable to L by the weighted mean method of type (1, 1) determined by the functions p(x) and q(x) and conditions p(x)/p'(x) integral(y)(0) f(x, s)ds = O(1) and q(y)/q'(y) integral(x)(0) f(t, y)dt = O(1) hold, then lim(x,y ->infinity) F(x, y) = L exists.en_US
dc.identifier.doi10.1063/1.5095104
dc.identifier.isbn978-0-7354-1816-5
dc.identifier.issn0094-243X
dc.identifier.urihttps://doi.org/10.1063/1.5095104
dc.identifier.urihttps://hdl.handle.net/11454/29438
dc.identifier.volume2086en_US
dc.identifier.wosWOS:000472950300024en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherAmer Inst Physicsen_US
dc.relation.ispartofInternational Conference of Mathematical Sciences (Icms 2018)en_US
dc.relation.ispartofseriesAIP Conference Proceedings
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDivergent integralsen_US
dc.subjectweighted means of double integralsen_US
dc.subjectTauberian theorems and conditionsen_US
dc.titleSome Tauberian Theorems for Weighted Means of Double Integrals on R-+(2)en_US
dc.typeConference Objecten_US

Dosyalar