Personalised anonymity for microdata release

dc.contributor.authorCan, Ozgu
dc.date.accessioned2019-10-27T10:04:34Z
dc.date.available2019-10-27T10:04:34Z
dc.date.issued2018
dc.departmentEge Üniversitesien_US
dc.description.abstractIndividual privacy protection in the released data sets has become an important issue in recent years. The release of microdata provides a significant information resource for researchers, whereas the release of person-specific data poses a threat to individual privacy. Unfortunately, microdata could be linked with publicly available information to exactly re-identify individuals' identities. In order to relieve privacy concerns, data has to be protected with a privacy protection mechanism before its disclosure. The k-anonymity model is an important method in privacy protection to reduce the risk of re-identification in microdata release. This model necessitates the indistinguishably of each tuple from at least k - 1 other tuples in the released data. While k-anonymity preserves the truthfulness of the released data, the privacy level of anonymisation is same for each individual. However, different individuals have different privacy needs in the real world. Thereby, personalisation plays an important role in supporting the notion of individual privacy protection. This study proposes a personalised anonymity model that provides distinct privacy levels for each individual by offering them to control their anonymity on the released data. To satisfy the personal anonymity requirements with low information loss, the authors introduce a clustering based algorithm.en_US
dc.identifier.doi10.1049/iet-ifs.2016.0613
dc.identifier.endpage347en_US
dc.identifier.issn1751-8709
dc.identifier.issn1751-8717
dc.identifier.issn1751-8709en_US
dc.identifier.issn1751-8717en_US
dc.identifier.issue4en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage341en_US
dc.identifier.urihttps://doi.org/10.1049/iet-ifs.2016.0613
dc.identifier.urihttps://hdl.handle.net/11454/30254
dc.identifier.volume12en_US
dc.identifier.wosWOS:000437851500012en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherInst Engineering Technology-Ieten_US
dc.relation.ispartofIet Information Securityen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titlePersonalised anonymity for microdata releaseen_US
dc.typeArticleen_US

Dosyalar