On ideals of prime rings with (?, ?)-derivations
dc.contributor.author | Deng Q. | |
dc.contributor.author | Yenigül M.Ş. | |
dc.contributor.author | Argaç N. | |
dc.date.accessioned | 2019-10-27T00:32:13Z | |
dc.date.available | 2019-10-27T00:32:13Z | |
dc.date.issued | 1997 | |
dc.department | Ege Üniversitesi | en_US |
dc.description.abstract | Let R be a prime ring. Let ?, ? be two homomorphisms and d be a (?, ?)-derivation of R. The purpose of this paper is to prove two results: (i) If char R ? 2, U is a non-zero ideal of R, ? is subjective such that ?(U) ? 0, ? is an automorphism and [d(U), d(U)] ?,? = 0, then ?2 = ?2 and ??= ??. (ii) Under the assumptions that either char R = 0 or char R > max{2, n}, U is a non-zero right ideal, and ?, ? are automorphisms of R, suppose [d(x), xn]?,? ? C?,? for all x ? U, then ? = ?. © TÜBİTAK. | en_US |
dc.identifier.endpage | 49 | en_US |
dc.identifier.issn | 1300-0098 | |
dc.identifier.issn | 1300-0098 | en_US |
dc.identifier.issue | SUPPL. | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 45 | en_US |
dc.identifier.uri | https://hdl.handle.net/11454/23711 | |
dc.identifier.volume | 21 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Turkish Journal of Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | ?-derivation | en_US |
dc.subject | (?, ?)-derivation | en_US |
dc.subject | Automorphism | en_US |
dc.subject | Homomorphism | en_US |
dc.subject | Ideal | en_US |
dc.subject | Prime ring | en_US |
dc.title | On ideals of prime rings with (?, ?)-derivations | en_US |
dc.type | Article | en_US |