Three different genetic algorithm approaches to the estimation of residential exergy input/output values
dc.contributor.author | Ozturk, HK | |
dc.contributor.author | Canyurt, OE | |
dc.contributor.author | Hepbasli, A | |
dc.contributor.author | Utlu, Z | |
dc.date.accessioned | 2019-10-27T19:02:48Z | |
dc.date.available | 2019-10-27T19:02:48Z | |
dc.date.issued | 2004 | |
dc.department | Ege Üniversitesi | en_US |
dc.description.abstract | This study develops residential exergy input/output estimation equations in order to better analyze exergy values and predict the future projections using genetic algorithm (GA) notion. GA EXnergy Input/Output Estimation Model (GAEXIEM/GAEXOEM) is used to estimate the future residential exergy input/output values based on the indicators of gross domestic product, population, import, export, house production, cement production and basic house appliances consumption. The model is applied to Turkey's residential sector, of which exergy input and output values were 861.06 and 77.32 PJ in 2002, respectively. The three different estimation models are proposed in quadratic forms. Developed models are validated with actual data, while future estimation of exergy values is projected for the years between 2003 and 2023. It may be concluded that all the models developed seem to be capable of predicting the residential-commercial exergy input/output values of Turkey as well as countries. This study is also expected to give a new direction to engineers, scientists, and policy makers in implementing energy planning studies and in dictating the energy strategies as a potential tool. (C) 2004 Elsevier Ltd. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.buildenv.2003.12.002 | |
dc.identifier.endpage | 816 | en_US |
dc.identifier.issn | 0360-1323 | |
dc.identifier.issn | 1873-684X | |
dc.identifier.issn | 0360-1323 | en_US |
dc.identifier.issn | 1873-684X | en_US |
dc.identifier.issue | 7 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 807 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.buildenv.2003.12.002 | |
dc.identifier.uri | https://hdl.handle.net/11454/38046 | |
dc.identifier.volume | 39 | en_US |
dc.identifier.wos | WOS:000220967500007 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Building and Environment | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | residential | en_US |
dc.subject | genetic algorithm | en_US |
dc.subject | energy | en_US |
dc.subject | exergy | en_US |
dc.subject | energy planning | en_US |
dc.subject | energy modeling | en_US |
dc.subject | future projections | en_US |
dc.subject | socio-economic indicators | en_US |
dc.title | Three different genetic algorithm approaches to the estimation of residential exergy input/output values | en_US |
dc.type | Article | en_US |