A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment classification

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In recent years, sentiment analysis is becoming more and more important as the number of digital text resources increases in parallel with the development of information technology. Feature selection is a crucial sub-stage for the sentiment analysis as it can improve the overall predictive performance of a classifier while reducing the dimensionality of a problem. in this study, we propose a novel wrapper feature selection algorithm based on Iterated Greedy (IG) metaheuristic for sentiment classification. We also develop a selection procedure that is based on pre-calculated filter scores for the greedy construction part of the IG algorithm. A comprehensive experimental study is conducted on commonly-used sentiment analysis datasets to assess the performance of the proposed method. the computational results show that the proposed algorithm achieves 96.45% and 90.74% accuracy rates on average by using Multi-nomial Naive Bayes classifier for 9 public sentiment and 4 Amazon product reviews datasets, respectively. the results also reveal that our algorithm outperforms state-of-the-art results for the 9 public sentiment datasets. Moreover, the proposed algorithm produces highly competitive results with state-of-the-art feature selection algorithms for 4 Amazon datasets. (C) 2020 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Sentiment classification, Feature selection, Iterated greedy, Metaheuristic, Machine learning

Kaynak

Expert Systems With Applications

WoS Q Değeri

Q1

Scopus Q Değeri

N/A

Cilt

146

Sayı

Künye