Lightless catalytic layered chitosan coating film using doped TiO2@metal ions nanoparticles for highly efficient dye degradation in aqueous media and disinfection applications

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Sa

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Chitosan-based materials are widely used in various industries due to their environmental friendliness (biodegradable and non-toxicity) and other antimicrobial properties. Improving the chitosan capacities using additional components such as titanium dioxide (TiO2) and other nanoparticles proves beneficial. Here, we propose the combination of chitosan-TiO2 nanocomposites (ChiTiO) with various metal ions (silver, zinc, copper, and iron), forming novel chitosan-based films to improve the capacities of the material further. The ChiTiO-ion metals nanocomposites and films were synthesized and characterized using dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis), Fourier transforms infrared spectroscopy (FT-IR), X-ray fluorescence (XRF), and cyclic voltammetry techniques. The biological activities of the metal-doped formulations showed increased antioxidant activities led by ChiTiO@Ag. Additionally, the methylene blue (MB) dye degradation capabilities were dominated by ChiTiO@Cu. The material showed a higher specificity towards MB than other dyes (methyl orange and bromophenol blue). The photocatalytic degradation at high temperatures (60 degrees C) was faster than at ambient (25 degrees C) and cold (4 degrees C) temperatures. The reusability of the film showed sustained photocatalytic capacities even after three cycles with a low loss of 16.7%. The antimicrobial activities of the films were tested against three pathogens (S. aureus, C. albicans, and P. aeruginosa) under different light conditions. Data showed ChiTiO@Ag with a concentration of 0.5 g composite having the best activity compared with the other materials. The most important finding is the ability of the proposed films to perform their activities without the need for any light activation. Lastly, ChiTiO@ion metals provide promising applications as ambient light packaging materials, coating materials, and photocatalysts.

Açıklama

Anahtar Kelimeler

Photocatalytic film, TiO2 nanoparticles, Chitosan, Dye degradation, Antimicrobial materials, Metal ions, Antibacterial Activities, Graphene Oxide, Visible-Light, Photocatalytic Activity, Antimicrobial Activity, Physical-Properties, Tio2 Nanoparticles, Zno, Nanocomposite, Composite

Kaynak

Progress In Organic Coatings

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

169

Sayı

Künye