Residential-commercial energy input estimation based on genetic algorithm (GA) approaches: an application of Turkey
dc.contributor.author | Ozturk, HK | |
dc.contributor.author | Canyurt, OE | |
dc.contributor.author | Hepbasli, A | |
dc.contributor.author | Utlu, Z | |
dc.date.accessioned | 2019-10-27T19:05:29Z | |
dc.date.available | 2019-10-27T19:05:29Z | |
dc.date.issued | 2004 | |
dc.department | Ege Üniversitesi | en_US |
dc.description.abstract | The main objective of the present study is to develop the energy input estimation equations for the residential-commercial sector (RCS) in order to estimate the future projections based on genetic algorithm (GA) notion and to examine the effect of the design parameters on the energy input of the sector. For this purpose, the Turkish RCS is given as an example. The GA Energy Input Estimation Model (GAEIEM) is used to estimate Turkey's future residential-commercial energy input demand based on GDP, population, import, export, house production, cement production and basic house appliances consumption figures. It may be concluded that the three various forms of models proposed here can be used as an alternative solution and estimation techniques to available estimation techniques. It is also expected that this study will be helpful in developing highly applicable and productive planning for energy policies. (C) 2003 Elsevier B.V. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.enbuild.2003.11.001 | |
dc.identifier.endpage | 183 | en_US |
dc.identifier.issn | 0378-7788 | |
dc.identifier.issn | 1872-6178 | |
dc.identifier.issn | 0378-7788 | en_US |
dc.identifier.issn | 1872-6178 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 175 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.enbuild.2003.11.001 | |
dc.identifier.uri | https://hdl.handle.net/11454/38294 | |
dc.identifier.volume | 36 | en_US |
dc.identifier.wos | WOS:000189122300009 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Sa | en_US |
dc.relation.ispartof | Energy and Buildings | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | residential | en_US |
dc.subject | genetic algorithm | en_US |
dc.subject | GA | en_US |
dc.subject | energy | en_US |
dc.subject | energy use | en_US |
dc.subject | energy planning | en_US |
dc.subject | energy modelling | en_US |
dc.subject | future projections | en_US |
dc.subject | Turkey | en_US |
dc.title | Residential-commercial energy input estimation based on genetic algorithm (GA) approaches: an application of Turkey | en_US |
dc.type | Article | en_US |