Efficient approaches for building-integrated photovoltaic modules: Advancements in phase change materials and fin designs
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Building-integrated photovoltaics (BIPV) offer a sustainable energy solution yet encounter challenges such as low solar-to-electric conversion efficiency. Furthermore, elevated operating temperatures can degrade BIPV performance and reliability. This study explores the use of phase change materials (PCMs) and optimized fin configurations to reach for an effective PV temperature regulation with minimal PCM/fin usage. The research explores PCM charging, heat storage, and the dependencies of PV electrical efficiency. T-shaped and Y-shaped fins are considered to enhance heat transfer and temperature regulation. The optimization leads to improved conversion efficiency, with additional fins improving thermal management. Key results highlight parameters that enable near-complete PCM melting and effective heat regulation. The Y-shaped fins case presents a better performance than the other cases (No-fins, straight fins, and T-fins) due to a higher heat transfer surface area, leading to a 93.4 % melting rate after 3600 s with 8 fins. Moreover, as the number of fins increases, convective heat transfer decreases due to internal fin proximity. Furthermore, more fins improve heat transport from PV to PCM, resulting in faster energy storage rates. Overall, optimizing PCM mass and fin design can enhance the heat storage capacity by up to 18 % and improve PV electrical efficiency by up to 3.1 %.
Açıklama
Anahtar Kelimeler
Energy management, Fin configurations, Heat storage, Heat transfer optimization, Photovoltaic systems
Kaynak
Journal of Energy Storage
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
103
Sayı
Dec
Künye
Kaplan, S., Sajadian, S., Mahdi, J. M., Mohammed, H. I., Tiji, M. E., Khosravi, K., Sen, S., & Talebizadehsardari, P. (2024). Efficient approaches for building-integrated photovoltaic modules: Advancements in phase change materials and fin designs. Journal of Energy Storage, 103, 114351.