Vehicle-Classification Algorithm Based on Component Analysis for Single-Loop Inductive Detector
Küçük Resim Yok
Tarih
2010
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ieee-Inst Electrical Electronics Engineers Inc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This paper presents a novel vehicle-classification algorithm that uses the time-variable signal generated by a single inductive loop detector. In earlier studies, the noisy raw signal was fed into the algorithm by reducing its size with rough sampling. However, this approach loses the original signal form and cannot be the best exemplar vector. The developed algorithm suggests three contributions to cope with these problems. The first contribution is to clear the noise with discrete Fourier transform (DFT). The second contribution is to transfer the noiseless pattern into the Principal Component Analysis (PCA) domain. PCA is exploited not only for decorrelation but for explicit dimensionality reduction as well. This goal cannot be achieved by simple raw data sampling. The last contribution is to expand the principal components with a local maximum (L-max) parameter. It strengthens the classification accuracy by emphasizing the undercarriage height variation of the vehicle. These parameters are fed into the three-layered backpropagation neural network (BPNN). BPNN classifies the vehicles into five groups, and the recognition rate is 94.21%. This recognition rate has performed best, compared with the methods presented in published works.
Açıklama
Anahtar Kelimeler
Discrete Fourier transform (DFT), inductive loop (IL), neural networks, noise removal, Principal Component Analysis (PCA), vehicle classification
Kaynak
Ieee Transactions on Vehicular Technology
WoS Q Değeri
Q1
Scopus Q Değeri
Cilt
59
Sayı
6