A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system
dc.contributor.author | Wei L. | |
dc.contributor.author | Zhang X. | |
dc.contributor.author | Kumar S. | |
dc.contributor.author | Yildirim A. | |
dc.date.accessioned | 2019-10-27T08:33:01Z | |
dc.date.available | 2019-10-27T08:33:01Z | |
dc.date.issued | 2012 | |
dc.department | Ege Üniversitesi | en_US |
dc.description.abstract | In this paper we develop and analyze an implicit fully discrete local discontinuous Galerkin (LDG) finite element method for solving the time-fractional coupled Schrödinger system. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. Through analysis we show that our scheme is unconditionally stable, and the L 2 error estimate has the convergence rate O(hk+ 1+(? t 2+( ?t)?2hk+ 12) for the linear case. Extensive numerical results are provided to demonstrate the efficiency and accuracy of the scheme. © 2012 Elsevier Ltd. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.camwa.2012.07.004 | |
dc.identifier.endpage | 2615 | en_US |
dc.identifier.issn | 0898-1221 | |
dc.identifier.issn | 0898-1221 | en_US |
dc.identifier.issue | 8 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 2603 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.camwa.2012.07.004 | |
dc.identifier.uri | https://hdl.handle.net/11454/26619 | |
dc.identifier.volume | 64 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Computers and Mathematics with Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Error estimates | en_US |
dc.subject | Local discontinuous Galerkin method | en_US |
dc.subject | Stability | en_US |
dc.subject | Time-fractional coupled Schrödinger system | en_US |
dc.title | A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system | en_US |
dc.type | Article | en_US |