A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system

dc.contributor.authorWei L.
dc.contributor.authorZhang X.
dc.contributor.authorKumar S.
dc.contributor.authorYildirim A.
dc.date.accessioned2019-10-27T08:33:01Z
dc.date.available2019-10-27T08:33:01Z
dc.date.issued2012
dc.departmentEge Üniversitesien_US
dc.description.abstractIn this paper we develop and analyze an implicit fully discrete local discontinuous Galerkin (LDG) finite element method for solving the time-fractional coupled Schrödinger system. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. Through analysis we show that our scheme is unconditionally stable, and the L 2 error estimate has the convergence rate O(hk+ 1+(? t 2+( ?t)?2hk+ 12) for the linear case. Extensive numerical results are provided to demonstrate the efficiency and accuracy of the scheme. © 2012 Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.camwa.2012.07.004
dc.identifier.endpage2615en_US
dc.identifier.issn0898-1221
dc.identifier.issn0898-1221en_US
dc.identifier.issue8en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage2603en_US
dc.identifier.urihttps://doi.org/10.1016/j.camwa.2012.07.004
dc.identifier.urihttps://hdl.handle.net/11454/26619
dc.identifier.volume64en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofComputers and Mathematics with Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectError estimatesen_US
dc.subjectLocal discontinuous Galerkin methoden_US
dc.subjectStabilityen_US
dc.subjectTime-fractional coupled Schrödinger systemen_US
dc.titleA numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger systemen_US
dc.typeArticleen_US

Dosyalar