Evaluation of nuclear imaging potential and photodynamic therapy efficacy of symmetrical and asymmetrical zinc phthalocyanines

Küçük Resim Yok

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Bv

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Photodynamic therapy (PDT) is a medical treatment for the removal of target tissues involving the delivery of a photosensitizer agent followed by irradiation with visible light. In the present study, symmetric Zn(II)Pc 1 and asymmetrically substituted Zn(II)Pc 2 were synthesized and examined multifunctional agents for tumor nuclear imaging, and PDT potential. The Zn(II)Pc 1 and Zn(II)Pc 2 were radiolabeled with I-131 with high efficiency (93.4 +/- 1.6% and 91.4 +/- 1.6%, respectively). The results of the biodistribution study showed that radiolabeled Zn(II)Pc 1 had high uptake on lung, large intestine, ovary and pancreas. However, the uptake of radiolabeled Zn(II)Pc 2 was statically significant in pancreas and intestine. In PDT studies, EMT6/P (mouse mammary cell) and HeLa (cervical adenocarcinoma cell) with Zn(II)Pc 1 and Zn(II)Pc 2 were exposed to red light at the doses of 10-30 J/cm(2). Although PDT activity of Zn(II)Pc 2 in HeLa cell line was determined, Zn(II)Pc 1 showed no phototoxic effect in both cell lines. In conclusion, radiolabeled Zn(II)Pc 1 might be a promising imaging agent for the lung, the ovary pancreas, and the colon tumors. However, radiolabeled Zn(II)Pc 2 might be a promising nuclear imaging agent for the colon and the pancreas tumors and promising PDT agent for cervical tumors. (C) 2016 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Photodynamic therapy, Cancer, Biodistribution, I-131, Radiolabeling, Phthalocyanine

Kaynak

Journal of Drug Delivery Science and Technology

WoS Q Değeri

Q4

Scopus Q Değeri

Q1

Cilt

33

Sayı

Künye