Hierarchical 3D Feature Learning forPancreas Segmentation
dc.authorscopusid | 57226020618 | |
dc.authorscopusid | 57221158503 | |
dc.authorscopusid | 57203681040 | |
dc.authorscopusid | 57223706450 | |
dc.authorscopusid | 24176491700 | |
dc.authorscopusid | 23391134800 | |
dc.contributor.author | Proietto Salanitri F. | |
dc.contributor.author | Bellitto G. | |
dc.contributor.author | Irmakci I. | |
dc.contributor.author | Palazzo S. | |
dc.contributor.author | Bagci U. | |
dc.contributor.author | Spampinato C. | |
dc.date.accessioned | 2023-01-12T20:22:22Z | |
dc.date.available | 2023-01-12T20:22:22Z | |
dc.date.issued | 2021 | |
dc.department | N/A/Department | en_US |
dc.description | 12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 -- 27 September 2021 through 27 September 2021 -- -- 266089 | en_US |
dc.description.abstract | We propose a novel 3D fully convolutional deep network for automated pancreas segmentation from both MRI and CT scans. More specifically, the proposed model consists of a 3D encoder that learns to extract volume features at different scales; features taken at different points of the encoder hierarchy are then sent to multiple 3D decoders that individually predict intermediate segmentation maps. Finally, all segmentation maps are combined to obtain a unique detailed segmentation mask. We test our model on both CT and MRI imaging data: the publicly available NIH Pancreas-CT dataset (consisting of 82 contrast-enhanced CTs) and a private MRI dataset (consisting of 40 MRI scans). Experimental results show that our model outperforms existing methods on CT pancreas segmentation, obtaining an average Dice score of about 88%, and yields promising segmentation performance on a very challenging MRI data set (average Dice score is about 77%). Additional control experiments demonstrate that the achieved performance is due to the combination of our 3D fully-convolutional deep network and the hierarchical representation decoding, thus substantiating our architectural design. © 2021, Springer Nature Switzerland AG. | en_US |
dc.identifier.doi | 10.1007/978-3-030-87589-3_25 | |
dc.identifier.endpage | 247 | en_US |
dc.identifier.isbn | 9783030875886 | |
dc.identifier.issn | 03029743 | |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.scopus | 2-s2.0-85116503336 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 238 | en_US |
dc.identifier.uri | https://doi.org/10.1007/978-3-030-87589-3_25 | |
dc.identifier.uri | https://hdl.handle.net/11454/79430 | |
dc.identifier.volume | 12966 LNCS | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | CT and MRI pancreas segmentation | en_US |
dc.subject | Fully convolutional neural networks | en_US |
dc.subject | Hierarchical encoder-decoder architecture | en_US |
dc.subject | 3D modeling | en_US |
dc.subject | Computerized tomography | en_US |
dc.subject | Convolution | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | Decoding | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Medical computing | en_US |
dc.subject | Medical imaging | en_US |
dc.subject | Network coding | en_US |
dc.subject | Statistical tests | en_US |
dc.subject | Convolutional neural network | en_US |
dc.subject | CT and MRI pancreas segmentation | en_US |
dc.subject | CT-scan | en_US |
dc.subject | Encoder-decoder architecture | en_US |
dc.subject | Feature learning | en_US |
dc.subject | Fully convolutional neural network | en_US |
dc.subject | Hierarchical encoder-decoder architecture | en_US |
dc.subject | Learn+ | en_US |
dc.subject | MRI scan | en_US |
dc.subject | Segmentation map | en_US |
dc.subject | Magnetic resonance imaging | en_US |
dc.title | Hierarchical 3D Feature Learning forPancreas Segmentation | en_US |
dc.type | Conference Object | en_US |