Five new cardenolides transformed from oleandrin and nerigoside by Alternaria eureka 1E1BL1 and Phaeosphaeriasp. 1E4CS-1 and their cytotoxic activities
Küçük Resim Yok
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Biotransformation of oleandrin (1) and nerigoside (2) by endophytic fungi; Alternaria eureka 1E1BL1 and Phaeospheria sp. 1E4CS-1, has led to the isolation of five new metabolites (3, 5, 6, 7 and 8) together with a known compound (4). The structures of the biotransformation products were elucidated by 1D-, 2D NMR and HR-MS. Phaeospheria sp. mainly provided monooxygenation reactions on the A and B rings, whereas A. eureka afforded both monooxygenated and desacetylated derivatives of the substrates. Cytotoxic activity of the compounds was tested against a non-cancerous (HEK-293) and four cancer (PANC-1, MIA PaCa-2, DU 145 and A549) cell lines by MTT cell viability assay. All compounds were less cytotoxic than oleandrin, which had IC50 values ranging between 2.7 and 41.9 nM. Two of the monohydroxylated metabolites, viz. 7(?)-hydroxy oleandrin (3) and 1(?)-hydroxy oleandrin (7), were also potent with IC50 values from 18.45 to 39.0 nM, while desacetylated + monohydroxylated, or dihydroxylated products had much lower cytotoxicity. Additionally, the lesser activity of 2 and its metabolite (6) possessing diginose as sugar residue inferred that oleandrose moiety is important for the toxicity of oleandrin as well as hydrophobicity of the steroid core. © 2020 Phytochemical Society of Europe
Açıklama
Anahtar Kelimeler
Cytotoxicity, Endophytic fungi, Microbial biotransformation, Nerigoside, Nerium oleander, Oleandrin
Kaynak
Phytochemistry Letters
WoS Q Değeri
Scopus Q Değeri
Q2
Cilt
41