The influence of fractality on the time evolution of the diffusion process

dc.contributor.authorSirin, H.
dc.contributor.authorBuyukkilic, F.
dc.contributor.authorErtik, H.
dc.contributor.authorDemirhan, D.
dc.date.accessioned2019-10-27T21:17:48Z
dc.date.available2019-10-27T21:17:48Z
dc.date.issued2010
dc.departmentEge Üniversitesien_US
dc.description.abstractIn the literature, the deviations from standard behaviors of the solutions of the kinetic equation and the analogous diffusion equation are put forward by investigations which are carried out in the frame of fractional mathematics and nonextensive physics On the other hand, the physical origins of the order of derivative namely a in fractional mathematics and the entropy index q in nonextensive physics are a topic of interest in scientific media. In this study, the solutions of the diffusion equation which have been obtained in the framework of fractional mathematics and nonextensive physics are revised. The diffusion equation is solved by the cumulative diminuation/growth method which has been developed by two of the present authors and physical nature of the parameters a and q are enlightened in connection with fractality of space and the memory effect It has been emphasized that the mathematical basis of deviations from standard behavior in the distribution functions could be established by fractional mathematics where as the physical mechanism could be revealed using the cumulative diminuation/growth method (C) 2010 Elsevier B.V. All rights reserveden_US
dc.identifier.doi10.1016/j.physa.2010.01.027
dc.identifier.endpage2013en_US
dc.identifier.issn0378-4371
dc.identifier.issn0378-4371en_US
dc.identifier.issue10en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage2007en_US
dc.identifier.urihttps://doi.org/10.1016/j.physa.2010.01.027
dc.identifier.urihttps://hdl.handle.net/11454/43872
dc.identifier.volume389en_US
dc.identifier.wosWOS:000276421100005en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofPhysica A-Statistical Mechanics and Its Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFractional diffusion equationen_US
dc.subjectFractional kinetic equationen_US
dc.subjectMittag-Leffler functionen_US
dc.subjectCumulative diminuation/growth processesen_US
dc.titleThe influence of fractality on the time evolution of the diffusion processen_US
dc.typeArticleen_US

Dosyalar