Sentiment analysis of Turkish and english twitter feeds using Word2Vec model [Word2Vec modelini kullanarak türkçe ve ingilizce twitter mesajlarinin duygu analizi]

dc.contributor.authorKarcioglu A.A.
dc.contributor.authorAydin T.
dc.date.accessioned2019-10-26T21:12:21Z
dc.date.available2019-10-26T21:12:21Z
dc.date.issued2019
dc.departmentEge Üniversitesien_US
dc.description.abstractSocial media has become an important part of daily life. With twitter, one of the most popular social media services, users express their feelings and thoughts to the whole world using twitter posts. For this reason, twitter feeds have become an important source of sentiment analysis. In this study, the apply of Word2Vec model in the classification of labeled data in English and Turkish Twitter feeds and the effect of getting root on feeds to Word2Vec model are investigated. Our study has two different data sets, English and Turkish. BOW and Word2Vec models were applied to each data set in the case where twitter feeds were not get roots and get roots were extracted. In this study, which is implemented in the Python programming language, the success percentages are compared by applying the scikit-learn classification algorithms, Linear SVM and Logistic Regression. © 2019 IEEE.en_US
dc.identifier.doi10.1109/SIU.2019.8806295
dc.identifier.isbn9781728119045
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/SIU.2019.8806295
dc.identifier.urihttps://hdl.handle.net/11454/15676
dc.indekslendigikaynakScopusen_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof27th Signal Processing and Communications Applications Conference, SIU 2019en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMachine Learningen_US
dc.subjectSentiment Analysisen_US
dc.subjectText Classificationen_US
dc.subjectWord Embeddingsen_US
dc.subjectWord2Vecen_US
dc.titleSentiment analysis of Turkish and english twitter feeds using Word2Vec model [Word2Vec modelini kullanarak türkçe ve ingilizce twitter mesajlarinin duygu analizi]en_US
dc.typeConference Objecten_US

Dosyalar