On prime and semiprime rings with derivations

dc.contributor.authorArgac, N
dc.date.accessioned2019-10-27T19:17:21Z
dc.date.available2019-10-27T19:17:21Z
dc.date.issued2006
dc.departmentEge Üniversitesien_US
dc.description.abstractLet R be a ring and S a nonempty subset of R. A mapping f : R --> R is called commuting on S if [f (x), x] = 0 for all x is an element of S. In this paper, firstly, we generalize the well-known result of Posner related to commuting derivations on prime rings. Secondly, we show that if R is a semiprime ring and I is a nonzero ideal of R, then a derivation d of R is commuting on I if one of the following conditions holds: (i) For all x, y is an element of I, either d([x, y]) = [x, y] or d([x, y]) = - [x, y]. (ii) For all x, y is an element of I, either d(x circle y) = x circle y or d(x circle y) = - (x circle y). (iii) R is 2-torsion free, and for all x, Y is an element of I, either [d(x), d(y)] = d([x, y]) or [d(x), d(y)] = d([y, x]). Furthermore, if d(I) not equal {0}, then R has a nonzero central ideal. Finally, we introduce the notation of generalized biderivation and prove that every generalized biderivation. on a noncommutative prime ring is a biderivation.en_US
dc.identifier.doi10.1142/S1005386706000320
dc.identifier.endpage380en_US
dc.identifier.issn1005-3867
dc.identifier.issn1005-3867en_US
dc.identifier.issue3en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage371en_US
dc.identifier.urihttps://doi.org/10.1142/S1005386706000320
dc.identifier.urihttps://hdl.handle.net/11454/38357
dc.identifier.volume13en_US
dc.identifier.wosWOS:000238625200002en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofAlgebra Colloquiumen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject(semi)prime ringen_US
dc.subjectcommuting mappingen_US
dc.subjectcentralizing mappingen_US
dc.subjectderivationen_US
dc.subjectgeneralized (bi)derivationen_US
dc.titleOn prime and semiprime rings with derivationsen_US
dc.typeArticleen_US

Dosyalar