The Arnon bases in the Steenrod algebra
Küçük Resim Yok
Tarih
2018
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
De Gruyter
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Let = p {\mathcal{A}=\mathcal{A}-{p}} be the mod p {\mathrm{mod}\,p} Steenrod algebra, where p is a fixed prime and let ' {\mathcal{A}^{\prime}} denote the Bockstein-free part of {\mathcal{A}} at odd primes. Being a connected graded Hopf algebra, {\mathcal{A}} has the canonical conjugation ?. Using this map, we introduce a relationship between the X- and Z-bases of ' {\mathcal{A}^{\prime}}. We show that these bases restrict to give bases to the well-known sub-Hopf algebras ¢ (n - 1) {\mathcal{A}(n-1)}, n ? 1 {n\geq 1}, of ' {\mathcal{A}^{\prime}}. © 2018 Walter de Gruyter GmbH, Berlin/Boston 2018.
Açıklama
Anahtar Kelimeler
Adem relations, antipode, Arnon basis, Hopf algebra, monomial basis, Steenrod algebra, Wall basis
Kaynak
Georgian Mathematical Journal
WoS Q Değeri
Scopus Q Değeri
Q3