On properly colored hamiltonian cycles in cubes of Distance-Colored Grids

dc.contributor.authorDogan D.
dc.contributor.authorKolasinski K.
dc.contributor.authorZhang P.
dc.date.accessioned2019-10-26T21:36:09Z
dc.date.available2019-10-26T21:36:09Z
dc.date.issued2013
dc.departmentEge Üniversitesien_US
dc.description.abstractFor a connected graph G and a positive integer k, the kth power Gkof G is the graph with V (Gk) = V (G) where uv ? E(Gk) if the distance dG(u, v) between u and v is at most k. The edge coloring of Gk defined by assigning each edge uv of Gk the color dG(u, v) produces an edge-colored graph Gk called a distance-colored graph. A distance-colored graph Gk is Hamiltonian-colored if Gk contains a properly colored Hamiltonian cycle. For a grid G = Pn Pm with n, m ? 2, it is known that G3 is Hamiltonian-colored and that G2 is Hamiltonian-colored if and only if nm ? 0 (mod 4). It is shown here that (i) G3 contains a properly colored Hamiltonian cycle whose edges are colored only 1 or 3 if and only if nm is even unless n = m = 2 or {n, m} is {2, 3} or {2, 7} and (ii) G3 contains a properly colored Hamiltonian cycle whose edges are colored only 2 or 3 if and only if nm ? 0 (mod 4) unless n = m = 2.en_US
dc.identifier.endpage67en_US
dc.identifier.issn0972-8600
dc.identifier.issn0972-8600en_US
dc.identifier.issue1en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage57en_US
dc.identifier.urihttps://hdl.handle.net/11454/17987
dc.identifier.volume10en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofAKCE International Journal of Graphs and Combinatoricsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDistance-colored graphen_US
dc.subjectHamiltonian-colored graphen_US
dc.subjectPowers of a graphen_US
dc.titleOn properly colored hamiltonian cycles in cubes of Distance-Colored Gridsen_US
dc.typeArticleen_US

Dosyalar