Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Take, W. A." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Measurement of Low Matric Potentials with Porous Matrix Sensors and Water-Filled Tensiometers
    (Soil Sci Soc Amer, 2009) Whalley, W. R.; Lock, G.; Jenkins, M.; Peloe, T.; Burek, K.; Balendonck, J.; Take, W. A.; Tuzel, I. H.; Tuzel, Y.
    Water-filled tensiometers are widely used to measure the matric potential of sod water. It is often assumed that, because these give a direct reading, they are accurate. With a series of laboratory tests with model laboratory systems of increasing complexity we show that the output of water-filled tensiometers can, particularly in drying sods, be in serious error. Specifically, we demonstrated that water-filled tensiometers can indicate a steady matric potential, typically between -60 and -90 kPa, when the sod is much drier. We demonstrate the use of water-filled tensiometers that can measure matric potentials smaller than -100 kPa in the laboratory and in the field. The physics of the failure of water-filled tensiometers is discussed. When the matric potential was greater than -60 kPa, in laboratory and field tests water-filled and porous matrix sensors were in good agreement. In the field environment the porous matrix sensor was useful because it allowed early detection of the failure of water-filled tensiometers. In dry soils (matric potential < -60 kPa) the porous matrix sensor was more reliable and accurate than the water-filled tensiometer.
  • Küçük Resim Yok
    Öğe
    Measurement of Low Matric Potentials with Porous Matrix Sensors and Water-Filled Tensiometers
    (Soil Sci Soc Amer, 2009) Whalley, W. R.; Lock, G.; Jenkins, M.; Peloe, T.; Burek, K.; Balendonck, J.; Take, W. A.; Tuzel, I. H.; Tuzel, Y.
    Water-filled tensiometers are widely used to measure the matric potential of sod water. It is often assumed that, because these give a direct reading, they are accurate. With a series of laboratory tests with model laboratory systems of increasing complexity we show that the output of water-filled tensiometers can, particularly in drying sods, be in serious error. Specifically, we demonstrated that water-filled tensiometers can indicate a steady matric potential, typically between -60 and -90 kPa, when the sod is much drier. We demonstrate the use of water-filled tensiometers that can measure matric potentials smaller than -100 kPa in the laboratory and in the field. The physics of the failure of water-filled tensiometers is discussed. When the matric potential was greater than -60 kPa, in laboratory and field tests water-filled and porous matrix sensors were in good agreement. In the field environment the porous matrix sensor was useful because it allowed early detection of the failure of water-filled tensiometers. In dry soils (matric potential < -60 kPa) the porous matrix sensor was more reliable and accurate than the water-filled tensiometer.

| Ege Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Ege Üniversitesi Rektörlüğü Gençlik Caddesi No : 12 35040 Bornova - İZMİR, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim