Yazar "Senturk S." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Evaluation of metabolic profiles of Saanen goats in the transition period(Hellenic Veterinary Medical Society, 2020) Akkaya F.; Senturk S.; Mecitoğlu Z.; Kasap S.; Ertunc S.; Kandemir C.Healthy Saanen goats (n=30) in periparturient period were used in the present study. Blood samples were collected 21, 14 and 7 days before parturition, at the time of birth and postpartum days 7, 14 and 21. Non-esterified fatty acids (NEFA), betahydroxy butyric acid (BHBA), Total protein (TP), albumin (ALB), blood urea nitrogen (BUN), creatinine (CREA) aspartate amino transferase (AST), gamma glutamyl transferase (GGT), sorbitol dehydrogenase (SDH), glucose (GLU), cholesterol (CHOL), triglyceride (TG), calcium (Ca), phosphorus (P), and magnesium (Mg) levels were evaluated. During the study period, NEFA, SDH, CREA levels increased and CHOL and TG levels decreased at time of parturition. When the changes of parameters in prepartum and postpartum period were compared, the concentrations of NEFA, CHOL, GLU, TG, Ca were higher (p <0.001) in prepartum period;however BHBA, Mg, ALB, GGT, AST, TP, P, BUN, SDH and CREA concentrations were detected to be higher (p <0.001) in postpartum period. Metabolic Profile Test based on biochemical parameters evaluated in our study would be beneficial for diagnosis, prevention and control of diseases such as pregnancy toxemia, hypocalcemia, infertility in goats. © 2020 F. AKKAYA, S. SENTURK, Z. MECITOĞLU, S. KASAP, S. ERTUNC, C. KANDEMIR.Öğe Thioredoxin interacting protein promotes invasion in hepatocellular carcinoma(Impact Journals LLC, 2018) Gunes A.; Bagirsakci E.; Iscan E.; Cakan-Akdogan G.; Aykutlu U.; Senturk S.; Ozhan G.; Erdal E.; Nart D.; Barbet F.Y.; Atabey N.Background: Considerable evidence suggests that oxidative stress plays an essential role in the progression of hepatocellular carcinoma (HCC). While acquired resistance to oxidative stress is the main driver of aggressive cell phenotype, the underlying mechanisms remain unknown. Here, we tested the hypothesis that elevated expression of Thioredoxin-interacting protein (TXNIP) is a main regulator of the aggressive phenotype in HCC. Materials and Methods: To test this hypothesis, we measured TXNIP expression levels in 11 HCC cell lines by qPCR and western blotting. In addition, 80 pairs of HCC tissues and matched liver tissues of 73 cases, as well as 11 normal liver tissue samples were examined by immunohistochemistry. Besides, TXNIP expression levels were analyzed by Oncomine Platform in seven independent microarray datasets. Finally, the functional role of TXNIP in HCC was investigated in vitro and in vivo by silencing and overexpression studies. Results: Our results show that TXNIP expression is significantly increased in HCC compared to non-tumor counterparts (p < 0.0001) as well as to normal (p < 0.0001) and cirrhotic (p < 0.0001) liver tissues. Moreover, stable overexpression of TXNIP in HCC cells (i) significantly increases ROS levels, (ii) induces EMT phenotype, (iii) increases motility, invasion and 3D branching tubulogenesis, (iv) decreases apoptosis, and (v) elevates in vivo metastasis in zebrafish embryos. Finally, we identify sinusoidal/stromal and cytoplasmic TXNIP staining patterns as risk factors for intrahepatic vascular invasion (p:0.0400). Conclusion: Our results strongly suggest that overexpression of TXNIP has a pivotal role in HCC progression by inducing cell survival, invasion, and metastasis. Copyright: Gunes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.