Yazar "Kaya, Tugce Zeynep" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Investigations on the effects of operational parameters in reverse electrodialysis system for salinity gradient power generation using central composite design (CCD)(Elsevier, 2022) Altiok, Esra; Kaya, Tugce Zeynep; Othman, Nur Hidayati; Kinali, Orhan; Kitada, Soma; Guler, Enver; Kabay, NalanReverse electrodialysis (RED) can be utilized for the production of renewable energy from salinity gradients. However, there are many key parameters that could influence the performance of RED. This study investigates the use RSM for development of a predictive power density (PD) and open-circuit voltage (OCV) model for the RED system. A three-factor central composite design (CCD) was used to quantify the effects of flow velocity (X-1), salinity ratio (X-2), and number of cell pairs (X-3) towards PD and OCV. A total of 17 experimental data were fitted and ANOVA was used to validate the accuracy of the models. 3D and surface plots were created to foresee the optimal levels of each variable. It was found that flow velocity and salinity ratio have the most dominant influences on the RED performances as compared to number of cell pairs. The predicted PD and OCV values were found to be reasonably fit with the experimental data, validating the predictability of applied models. Therefore, this study suggests that CCD can be considered an effective tool for evaluating and optimizing the RED system using a minimum number of experiments.Öğe Performance of Reverse Electrodialysis System for Salinity Gradient Energy Generation by Using a Commercial Ion Exchange Membrane Pair with Homogeneous Bulk Structure(Mdpi, 2021) Altiok, Esra; Kaya, Tugce Zeynep; Guler, Enver; Kabay, Nalan; Bryjak, MarekSalinity gradient energy is a prominent alternative and maintainable energy source, which has considerable potential. Reverse electrodialysis (RED) is one of the most widely studied methods to extract this energy. Despite the considerable progress in research, optimization of RED process is still ongoing. In this study, effects of the number of membrane pairs, ratio of salinity gradient and feed velocity on power generation via the reverse electrodialysis (RED) system were investigated by using Fujifilm cation exchange membrane (CEM Type 2) and FujiFilm anion exchange membrane (AEM Type 2) ion exchange membranes. In the literature, there is no previous study based on a RED system equipped with Fujifilm AEM Type II and CEM Type II membranes that have homogeneous bulk structure. Using 400 mu m of intermembrane distance, maximum obtainable power density by 5 pairs of Fujifilm membranes at 1:45 salinity ratio and with a linear flow rate of 0.833 cm/s was 0.426 W/m(2).