Yazar "Hiyama, T." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions(Inst Engineering Technology-Iet, 2009) Syafaruddin; Karatepe, E.; Hiyama, T.The one of main causes of reducing energy yield of photovoltaic systems is partially shaded conditions. Although the conventional maximum power point tracking (MPPT) control algorithms operate well under uniform insolation, they do not operate well in non-uniform insolation. The non-uniform conditions cause multiple local maximum power points on the power-voltage curve. The conventional MPPT methods cannot distinguish between the global and local peaks. Since the global maximum power point (MPP) may change within a large voltage window and also its position depends on shading patterns, it is very difficult to recognise the global operating point under partially shaded conditions. In this paper, a novel MPPT system is proposed for partially shaded PV array using artificial neural network (ANN) and fuzzy logic with polar information controller. The ANN with three layer feed-forward is trained once for several partially shaded conditions to determine the global MPP voltage. The fuzzy logic with polar information controller uses the global MPP voltage as a reference voltage to generate the required control signal for the power converter. Another objective of this study is to determine the estimated maximum power and energy generation of PV system through the same ANN structure. The effectiveness of the proposed method is demonstrated under the experimental real-time simulation technique based dSPACE real-time interface system for different interconnected PV arrays such as series-parallel, bridge link and total cross tied configurations.Öğe Simple and high-efficiency photovoltaic system under non-uniform operating conditions(Inst Engineering Technology-Iet, 2010) Karatepe, E.; Syafaruddin; Hiyama, T.The interest in improving the efficiency of photovoltaic (PV) system has emerged because of increasing the number of home-based or small-scale PV power system. However, the home-based PV system is vulnerable to the non-uniform operating conditions. Under such circumstances, multiple-local maximum power points (MPPs) occur on the power-voltage characteristics and an advanced control algorithm is required to track the global MPP. It is very difficult to provide a sophisticated control algorithm because of the non-linear characteristics of PV system. This study describes the potential to improve the efficiency of PV arrays under non-uniform operating conditions by using the conventional hill-climbing MPP tracking method in total cross tied (TCT) connected PV arrays, in which each group of series connected solar cells that belong to single bypass diode is interconnected. The various scenarios were tested and the results indicate that the efficiency of the proposed system is much higher than that of the same size of series-parallel (SP) PV array configuration.