Yazar "Guler Celik, Emine" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Fluorescent bioassay for SARS-CoV-2 detection using polypyrene-g-poly(epsilon-caprolactone) prepared by simultaneous photoinduced step-growth and ring-opening polymerizations(Springer Wien, 2022) Celiker, Tugba; Ghorbanizamani, Faezeh; Moulahoum, Hichem; Guler Celik, Emine; Tok, Kerem; Zihnioglu, Figen; Cicek, CandanThe construction of a rapid and easy immunofluorescence bioassay for SARS-CoV-2 detection is described. We report for the first time a novel one-pot synthetic approach for simultaneous photoinduced step-growth polymerization of pyrene (Py) and ring-opening polymerization of epsilon-caprolactone (PCL) to produce a graft fluorescent copolymer PPy-g-PCL that was conjugated to SARS-CoV-2-specific antibodies using EDC/NHS chemistry. The synthesis steps and conjugation products were fully characterized using standard spectral analysis. Next, the PPy-g-PCL was used for the construction of a dot-blot assay which was calibrated for applications to human nasopharyngeal samples. The analytical features of the proposed sensor showed a detection range of 6.03-8.7 LOG viral copy mL(-1) (Ct Scores: 8-25), the limit of detection (LOD), and quantification (LOQ) of 1.84 and 6.16 LOG viral copy mL(-1), respectively. The repeatability and reproducibility of the platform had a coefficient of variation (CV) ranging between 1.2 and 5.9%. The fluorescence-based dot-blot assay was tested with human samples. Significant differences were observed between the fluorescence intensity of the negative and positive samples, with an overall correct response of 93.33%. The assay demonstrated a high correlation with RT-PCR data. This strategy opens new insights into simplified synthesis procedures of the reporter molecules and their high potential sensing and diagnosis applications.Öğe Nano-Scaled Materials and Polymer Integration in Biosensing Tools(Mdpi, 2022) Moulahoum, Hichem; Ghorbanizamani, Faezeh; Guler Celik, Emine; Timur, SunaThe evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics.