Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Canak I." seçeneğine göre listele

Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    On a Tauberian theorem for the weighted mean method of summability
    (University of Kuwait, 2015) Sezer S.A.; Canak I.
    We investigate conditions needed for a weighted mean summable series to be convergent by using Kloosterman's method. The results of this paper generalize the well known results of Landau and Hardy.
  • Küçük Resim Yok
    Öğe
    On converse theorems for the discrete Bürmann power series method of summability
    (Maejo University, 2016) Sezer S.A.; Canak I.
    In this communication we recover ordinary convergence of a series from its summability by the discrete Bürmann power series method under certain conditions. © 2016 by Maejo University.
  • Küçük Resim Yok
    Öğe
    Revisited tauberian theorem for which slow decrease with respect to a weight function is a tauberian condition for the weighted mean summability of integrals over r
    (American Institute of Physics Inc., 2021) Canak I.
    In this extended abstract, we present an alternative proof of a Tauberian theorem of slowly decreasing type with respect to the weight function due to Karamata [5] for the weighted mean summable real-valued integrals over R+ := [0,?). Some particular choices of weight functions provide alternative proofs of some well-known Tauberian theorems given for several important summability methods. © 2021 American Institute of Physics Inc.. All rights reserved.
  • Küçük Resim Yok
    Öğe
    Some Tauberian theorems for weighted means of double integrals on R + 2
    (American Institute of Physics Inc., 2019) Flndlk G.; Canak I.
    Let p(x) and q(y) be nondecreasing continuous functions on [0, 8) such that p(0) = q(0) = 0 and p(x), q(y) › 8 as x, y › 8. For a locally integrable function R+2 = [0,8) × [0,8), we denote its double integral by F(x,y)=?0x?0yf(t,s)dtds and its weighted mean of type (?, ß) by t?,ß(x,y)=?0x?0y(1-p(t)p(x))?(1-q(s)q(y))ßf(t,s)dtds where ? > -1 and ß > -1. We say that ?08?08f(t,s)dtds is integrable to L by the weighted mean method of type (?, ß) determined by the functions p(x) and q(x) if lim x,y›8 t ?,ß (x, y) = L exists. We prove that if lim x,y›8 t ?,ß (x, y) = L exists and t ?,ß (x, y) is bounded on R+2 for some ? > -1 and ß > -1, then lim x,y›8 t ?+h,ß+k (x, y) = L exists for all h > 0 and k > 0. Finally, we prove that if ?08?08f(t,s)dtds is integrable to L by the weighted mean method of type (1, 1) determined by the functions p(x) and q(x) and conditions (x)p'(x)?0yf(x,s)ds=O(1)andq(y)q'(y)?0xf(t,y)dt=O(1) hold, then lim x,y›8 F(x, y) = L exists. © 2019 Author(s).
  • Küçük Resim Yok
    Öğe
    Statistical extensions of Tauberian theorems for the weighted mean method of summability in two-normed spaces
    (American Institute of Physics Inc., 2021) Bakicierler H.; Canak I.
    In this extended abstract, we first define the concept of statistical summability (N, p) in 2-normed spaces and then present necessary and/or sufficient Tauberian conditions for statistical summability (N, p) in 2-normed spaces. © 2021 American Institute of Physics Inc.. All rights reserved.
  • Küçük Resim Yok
    Öğe
    A Tauberian theorem for Cesro summability of integrals
    (2011) Canak I.; Totur Ü.
    In this paper we give a proof of the generalized Littlewood Tauberian theorem for Cesro summability of improper integrals. © 2010 Elsevier Ltd. All rights reserved.

| Ege Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Ege Üniversitesi Rektörlüğü Gençlik Caddesi No : 12 35040 Bornova - İZMİR, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim