Yazar "Caglar, H.O." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Combination of salinomycin and azd3463 reveals synergistic effect on reducing the viability of t98g glioblastoma cells(Bentham Science Publishers, 2020) Asik, A.; Ay, N.P.O.; Bagca, B.G.; Caglar, H.O.; Gunduz, C.; Avci, C.B.Background: Salinomycin, an ionophore antibiotic, is known to be an effective agent in reducing the viability of Glioblastoma (GBM) cells. The combination of salinomycin with other chemotherapeutic drugs would help to overcome the drug resistance of GBM cells. Objective: This study aims to test the combinatorial effect of salinomycin and AZD3463 in T98G GBM cells. Methods: The cytotoxic effects of drugs on T98G GBM cells were determined by using WST-8 assay. Flow cytometry was used to identify apoptosis and cell cycle profiles after treatments. Real-time PCR was used to portray mRNA expression profiles of genes in the Wnt-signaling pathway after treatments. Results: IC50 concentrations of AZD3463 and salinomycin were 529nM and 7.3µM for 48h, respectively. The combination concentrations of AZD3463 and salinomycin were 3.3µM and 333nM, respectively. The combination treatment showed a synergistic effect on reducing the viability of GBM cells. AZD3463, salinomycin, and their combination induced apoptosis in 1.2, 1.4, and 3.2 folds, respectively. AZD3463 and the combination treatment induced the cell cycle arrest at the G1 phase. Salinomycin and AZD3463 treatments, either alone or in combination, resulted in the downregulation or upregulation of mRNA expression levels of genes in the Wnt-signaling pathway. Conclusion: Salinomycin, AZD3463, and their combination may inhibit proliferation and induce apoptosis in GBM cells due to a decrease in expression levels of genes acting in both the canonical and non-canonical Wnt signaling pathways. The Wnt signaling pathway may be involved in salinomycin-AZD3463 drug interaction. © 2020 Bentham Science Publishers.Öğe Temozolomide treatment combined with AZD3463 shows synergistic effect in glioblastoma cells(Elsevier B.V., 2020) Goker Bagca, B.; Ozates, N.P.; Asik, A.; Caglar, H.O.; Gunduz, C.; Biray Avci, C.Temozolomide (TMZ) is used in the standard therapy regimen for patients with glioblastoma (GBM). However, some GBM patients do not respond to TMZ therapy. The combining therapeutic agents in GBM treatment are attracting considerable interest due to TMZ resistance. This study aims to identify the combinatorial effect of TMZ and AZD3463 on the viability of the T98G GBM cells. The cytotoxic effects of compounds were determined by using WST-8 assay. Flow cytometry was used to determine apoptosis and cell cycle profiles after treatments. Real-time PCR was used to identify mRNA expression of genes in the PI3K/AKT signaling pathway after treatments. IC50 concentrations of TMZ and AZD3463 were found to be 1.54 mM and 529 nM after incubation for 48 h, respectively. The combination treatment showed a synergistic effect on reducing the viability of GBM cells. Each one of TMZ, AZD3463, and combination treatments induced apoptosis. Treatments, either alone or the combination of these agents, caused the cell cycle arrest in distinct phases. TMZ and AZD3463 treatments, either alone or in combination, downregulated mRNA expression of genes in the PI3K/AKT signaling pathway. The combination of TMZ with AZD3463 may increase the efficacy of single TMZ treatment in GBM cells due to decreased expression of genes in the PI3K/AKT signaling pathway that is responsible for drug resistance and intratumoral heterogeneity. © 2020 Elsevier Inc.