Yazar "Biyik E." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Heat exchanger applications in wastewater source heat pumps for buildings: A key review(Elsevier Ltd, 2015) Culha O.; Gunerhan H.; Biyik E.; Ekren O.; Hepbasli A.Abstract Wastewater heat recovery applications are becoming widespread in energy saving applications. A sustainable and low emissions operation in air conditioning and heating processes is achieved by harvesting the otherwise wasted energy in wastewater through specially designed heat exchangers, lying at the core of heat pumps. This combined system is called wastewater source heat pump. In this study, a review of wastewater heat exchangers in wastewater source heat pump applications is presented, and wastewater heat exchangers are classified in detail based on multiple features, including utilization and construction methodology. Also, the potential of wastewater, types of wastewater source heat pumps, and their applications are briefly discussed. © 2015 Elsevier B.V.Öğe Numerical analysis of a near-room-temperature magnetic cooling system [Analyse numérique d'un système de froid magnétique proche de la température ambiante](Elsevier Ltd, 2017) Ezan M.A.; Ekren O.; Metin C.; Yilanci A.; Biyik E.; Kara S.M.In this study, for a near-room-temperature magnetic cooling system, a decoupled multi-physics numerical approach (Magnetism, Fluid Flow, and Heat Transfer) is developed using a commercial CFD solver, ANSYS-FLUENT, as a design tool. User defined functions are incorporated into the software in order to take into account the magnetocaloric effect. Magnetic flux density is assumed to be linear during the magnetization and demagnetization processes. Furthermore, the minimum and maximum magnetic flux densities (Bmin and Bmax) are defined as 0.27 and 0.98, respectively. Two different sets of analyses are conducted by assuming an insulated cold heat exchanger (CHEX) and by defining an artificial cooling load in the CHEX. As a validation case, experimental work from the literature is reproduced numerically, and the results show that the current methodology is fairly accurate. Moreover, parametric analyses are conducted to investigate the effect of the velocity of heat transfer fluid (HTF) and types of HTF on the performance of the magnetic cooling system. Also, the performance metrics of the magnetic cooling system are investigated with regards to the temperature span of the magnetic cooling unit, and the cooling load. It is concluded that reducing the cycle duration ensures reaching lower temperature values. Similarly, reducing the velocity of the HTF allows reducing the outlet temperature of the HTF. In the current system, the highest temperature spans are obtained numerically as around 6?K, 5.2?K and 4.1?K for the cycle durations of 4.2?s, 6.2?s and 8.2?s, respectively. © 2016 Elsevier Ltd and IIR