Yazar "Baquero, Grau" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe CARBON FOOTPRINT AND ENERGY BALANCE OF BIODIESEL PRODUCED FROM TANNERY FLESHINGS(Amer Leather Chemists Assoc, 2014) Kilic, Eylem; Puig, Rita; Baquero, Grau; Zengin, GokhanThis paper analyzes, from a life cycle perspective, the environmental performance of biodiesel obtained from leather industry fleshing waste (BDF). The indicators used for this environmental evaluation are: global warming potential (GWP) and energy return on investment (EROI). The contribution of each process-step in both GWP and EROI was determined. Transesterification of fat to obtain the BDF has been proved to be the most significant step in the process, mainly due to the consumption of methanol A comparison between BDF and petroleum diesel obtained from non-renewable oil has also been performed using the same indicators. The results show a clear preference for BDF, although data from industrial real plants has to be considered in further works for BDF process to provide more accurate results.Öğe Environmental optimization of chromium recovery from tannery sludge using a life cycle assessment approach(Elsevier Science Bv, 2011) Kilic, Eylem; Puig, Rita; Baquero, Grau; Font, Joaquim; Colak, Selime; Gurler, DenizLife cycle assessment (LCA) was used to evaluate the environmental impact of an oxidative chromium recovery method from tannery sludge, in comparison with the usual landfilling process. Three improvement options (water reduction, byproduct use and anaerobic sludge digestion) were considered. The results showed that the proposed chromium recovery process would be better environmentally than conventional landfilling in all the evaluated impact categories if the amount of chromium recovered was 43 kg per ton of sludge. This amount could be recovered if the chromium concentration was about 20 times higher than that considered in this study. Alternatively, a lower chromium concentration would produce a better result if the recovery method was optimized and implemented at industrial rather than laboratory scale, and if more accurate data were provided on environmental credits for avoiding the chromium production process. Thus, the recovery method is environmentally beneficial when tannery sludge contains a chromium concentration of about 100,000 ppm. According to the literature, such concentrations are not unusual. The results could serve as the basis for further environmental improvements in chromium recovery and tannery sludge management and should be used in decision-making processes, especially for end-of-pipe treatments. (C) 2011 Elsevier B.V. All rights reserved.