Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Amir, El Haffaf" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Existence of solutions to fourth-order differential equations with deviating arguments
    (Springeropen, 2015) Naceri, Mostepha; Agarwal, Ravi P.; Cetin, Erbil; Amir, El Haffaf
    In this paper, we consider fourth-order differential equations on a half-line with deviating arguments of the form u((4))(t) + q(t) f (t, [u(t)], [u'(t)], [u ''(t)], u'''(t)) = 0, 0 < t < + infinity, with the boundary conditions u(0) = A, u' (0) = B, u '' (t) -au'''(t) = theta(t), -tau <= t <= 0; u'''(+infinity) = C. We present sufficient conditions for the existence of a solution between a pair of lower and upper solutions by using Schauder's fixed point theorem. Also, we establish the existence of three solutions between two pairs of lower and upper solutions by using topological degree theory. An important feature of our existence criteria is that the obtained solutions may be unbounded. We illustrate the importance of our results through two simple examples.
  • Küçük Resim Yok
    Öğe
    Existence of solutions to fourth-order differential equations with deviating arguments
    (Springeropen, 2015) Naceri, Mostepha; Agarwal, Ravi P.; Cetin, Erbil; Amir, El Haffaf
    In this paper, we consider fourth-order differential equations on a half-line with deviating arguments of the form u((4))(t) + q(t) f (t, [u(t)], [u'(t)], [u ''(t)], u'''(t)) = 0, 0 < t < + infinity, with the boundary conditions u(0) = A, u' (0) = B, u '' (t) -au'''(t) = theta(t), -tau <= t <= 0; u'''(+infinity) = C. We present sufficient conditions for the existence of a solution between a pair of lower and upper solutions by using Schauder's fixed point theorem. Also, we establish the existence of three solutions between two pairs of lower and upper solutions by using topological degree theory. An important feature of our existence criteria is that the obtained solutions may be unbounded. We illustrate the importance of our results through two simple examples.
  • Küçük Resim Yok
    Öğe
    Existence of solutions to fourth-order differential equations with deviating arguments
    (Springeropen, 2015) Naceri, Mostepha; Agarwal, Ravi P.; Cetin, Erbil; Amir, El Haffaf
    In this paper, we consider fourth-order differential equations on a half-line with deviating arguments of the form u((4))(t) + q(t) f (t, [u(t)], [u'(t)], [u ''(t)], u'''(t)) = 0, 0 < t < + infinity, with the boundary conditions u(0) = A, u' (0) = B, u '' (t) -au'''(t) = theta(t), -tau <= t <= 0; u'''(+infinity) = C. We present sufficient conditions for the existence of a solution between a pair of lower and upper solutions by using Schauder's fixed point theorem. Also, we establish the existence of three solutions between two pairs of lower and upper solutions by using topological degree theory. An important feature of our existence criteria is that the obtained solutions may be unbounded. We illustrate the importance of our results through two simple examples.

| Ege Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Ege Üniversitesi Rektörlüğü Gençlik Caddesi No : 12 35040 Bornova - İZMİR, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim