Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Özdal-Kurt F." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    The contribution of differentiated bone marrow stromal stem cell-loaded biomaterial to treatment in critical size defect model in rats [Biyomateryal üzerinde farkli{dotless}laşmi{dotless}ş kemik İligi stromal kök hücrelerinin kritik hacim defektli si{dotless}çan modelinde uygulanmasi{dotless}ni{dotless}n tedavideki yeri]
    (2010) Tuglu M.I.; Özdal-Kurt F.; Koca H.; Sarac A.; Barut T.; Kazanç A.
    Mandibular fractures present a challenge in maxillo-facial surgery due to difficulties in healing and complications. In recent years, advances in bio-engineering as well as stem-cell studies suggest that it may be possible to treat these fractures by stem cell treatment with biomaterials. In the present study, we explored the efficacy of differentiated stem cells placed on biomaterials on fracture treatment and its relation with oxidative stress and apoptosis. A 4 mm circular defect was made on the mandibulae of 20 adults Wistar rats. Hydroxyapatite gel (control, n=5) and bone marrow stromal cells differentiated into osteoblast-seeded hydroxyapatite gel (n=5) were implanted within these defects. We were also used empty cavities (n=5) and cavities filled with only cells (n=5) for negative controls. Animals were sacrificed after a 6-week healing period and samples were examined blindly by histological, immunohistochemical, radiological and morphometric methods. Compared to the control cavities that underwent no procedure or filled with just cells, there were significant (P<0.001) healings in both groups. Hydroxyapatite gel with differentiated stem cells on, however, yielded significantly (P<0.05) better new bone formation and osteoid production decreased fibrous tissue and increased cellular activity. Differentiated stromal cells combined with biomaterial accelerated the treatment in defects of critical volume within a 6-week period of healing, activated and resulted in significant formation of bone of higher quality. Promotion of bone formation by the helps of bioengineering and stromal cells has gained importance in the treatment and reconstruction of fractures.
  • Küçük Resim Yok
    Öğe
    Enhanced biocompatibility of GPC by silver ion implantation
    (2005) Zimmerman R.; Gürhan I.; Muntele C.; Ila D.; Özdal-Kurt F.; Sen B.H.
    Biocompatible Glassy Polymeric Carbon (GPC) is used for artificial heart valves and in other biomedical applications. Although it is ideally suited for implants in the blood stream, tissue that normally forms around the moving parts of a GPC heart valve sometimes loses adhesion and creates embolisms downstream. Here we compare silver ion implantation and silver deposition, each of which strongly inhibits cell attachment on GPC. Inhibition of cell adhesion is a desirable improvement to current GPC cardiac implants. In vitro biocompatibility tests have been carried out with model cell lines to demonstrate that traces of silver can favorably influence the surface of GPC for biomedical applications. © 2006 Materials Research Society.

| Ege Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Ege Üniversitesi Rektörlüğü Gençlik Caddesi No : 12 35040 Bornova - İZMİR, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim