Karaca, Ilkay Yaslan2019-10-272019-10-2720080898-12211873-76680898-12211873-7668https://doi.org/10.1016/j.camwa.2007.04.032https://hdl.handle.net/11454/40692In this paper, we study the existence of at least one or two positive solutions to the second-order triple-point nonlinear boundary value problem y"(x) + h(x) F(y(x)) = 0. x epsilon [a,b] y(a) = alpha y(eta), y(b) = beta y9 eta) where 0 < alpha < beta < 1 and eta epsilon (a, b). Here h changes sign in eta. As an application, we also give some examples to demonstrate Our results. (c) 2007 Elsevier Ltd. All rights reserved.en10.1016/j.camwa.2007.04.032info:eu-repo/semantics/openAccesspositive solutionsfixed-point theoremsconealternating coefficientNonlinear triple-point problems with change of signArticle554691703WOS:000253660200009N/AQ2