Çanak I.Totur Ü.2019-10-272019-10-2720120354-51800354-5180https://doi.org/10.2298/FIL1206209Chttps://hdl.handle.net/11454/26586Let p(x) be a nondecreasing continuous function on [0,?) such that p(0) = 0 and p(t) › ? as t › ?. For a continuous function f(x) on [0,?), we define We say that a continuous function f(x) on [0,?) is (C, ?) integrable to a by the weighted mean method determined by the function p(x) for some ? > -1 if the limit limt›???(t) = a exists. We prove that if the limit limt›???(t) = a exists for some ? > -1, then the limit limt›? ??+h(t) = a exists for all h > 0. Next, we prove that if the limit limt›???(t) = a exists for some ? > 0 and then the limit limt›???-1(t) = a exists.en10.2298/FIL1206209Cinfo:eu-repo/semantics/closedAccess(C,?) integrabilityCesàro integrabilityDivergent integralsTauberian conditions and theoremsThe (C, ?) integrability of functions by weighted mean methodsArticle26612091214Q3