Sahin C.Ulusoy M.Zafer C.Ozsoy C.Varlikli C.Dittrich T.Cetinkaya B.Icli S.2019-10-262019-10-2620100143-72080143-7208https://doi.org/10.1016/j.dyepig.2009.06.016https://hdl.handle.net/11454/20260The novel ligand 1-(2,4,6-trimethylbenzyl)-2-(2'-pyridyl)benzimidazole and its heteroleptic ruthenium (II) complex were synthesized. The complex was characterized using spectroscopic methods and cyclic voltammetry. Charge-separation was investigated within nanoporous titanium dioxide employing surface photovoltage spectroscopy. The performance of the ruthenium complex as a charge transfer photosensitizer in nanocrystalline, titanium dioxide-based, dye sensitized solar cells was studied under standard AM 1.5 sunlight using an electrolyte consisting of 0.6 M 1-butyl-3-methyl-imidazolium iodide, 0.1 M lithium iodide, 0.05 M iodine and 0.5 M 4-tert-butyl pyridine in 3-methoxy propyonitrile. The novel complex had a photocurrent density of 9.47 mA cm -2 , 600 mV open circuit potential and 0.60 fill factor yielding an efficiency of 3.4%. The photovoltaic performance of the colorant was compared with that of cis-bis(isothiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylato) (2,2'-bipyridyl-4,4'-di-nonyl) ruthenium(II); both compounds exhibited similar efficiency, while the fill factor value was higher for the novel dye. © 2009 Elsevier Ltd. All rights reserved.en10.1016/j.dyepig.2009.06.016info:eu-repo/semantics/closedAccess2-(2'-pyridyl)benzimidazoleCharge-separationDye sensitized solar cellsRuthenium (II) complexSurface photovoltage spectroscopyTitanium dioxideThe synthesis and characterization of 2-(2'-pyridyl)benzimidazole heteroleptic ruthenium complex: Efficient sensitizer for molecular photovoltaicsArticle8418894Q1