Turgay N.D.Karaca I.2023-01-122023-01-1220201072947X1072-947Xhttps://doi.org/10.1515/gmj-2018-0076https://hdl.handle.net/11454/79777Let 'œ = 'œ p {\mathcal{A}=\mathcal{A}_{p}} be the mod ⢠p {\mathrm{mod}\,p} Steenrod algebra, where p is a fixed prime and let 'œ ? {\mathcal{A}{\prime}} denote the Bockstein-free part of 'œ {\mathcal{A}} at odd primes. Being a connected graded Hopf algebra, 'œ {\mathcal{A}} has the canonical conjugation ?. Using this map, we introduce a relationship between the X- A nd Z-bases of 'œ ? {\mathcal{A}{\prime}}. We show that these bases restrict to give bases to the well-known sub-Hopf algebras 'œ ⢠(n-1) {\mathcal{A}(n-1)}, n ? 1 {n\geq 1}, of 'œ ? {\mathcal{A}{\prime}}. © 2020 Walter de Gruyter GmbH, Berlin/Boston 2020.en10.1515/gmj-2018-0076info:eu-repo/semantics/closedAccessAdem relationsantipodeArnon basisHopf algebramonomial basisSteenrod algebraWall basisThe Arnon bases in the Steenrod algebraArticle2746496542-s2.0-85057023771Q3