Geyik, CanerCiftci, MustafaDemir, BilalGuler, BaharOzkaya, A. BurakGumus, Z. PinarBarlas, F. BarisDemirkol, Dilek OdaciCoskunol, HakanTimur, SunaYagci, Yusuf2019-10-272019-10-2720151759-99541759-99621759-99541759-9962https://doi.org/10.1039/c5py00780ahttps://hdl.handle.net/11454/51132In the present study, two amphiphilic star-hyperbranched copolymers based on poly(methyl methacrylate)-b-poly(2-hydroxyethyl methacrylate) (PMMA-b-PHEMA), with different hydrophilic PHEMA segment contents (PMMA-b-PHEMA-1, and PMMA-b-PHEMA-2), were synthesized, and their drug loading and release profiles were examined using Paclitaxel (PTX) as a model drug. The drug loading capacities and encapsulation efficiencies were found to be similar in both polymers. The encapsulation efficiencies were found to be prominent at 98% and 98.5% for PMMA-b-PHEMA-1 and PMMA-b-PHEMA-2, respectively. On the other hand, the drug release behaviors varied in favor of the block copolymer comprising shorter PHEMA chains (PMMA-b-PHEMA-1). Additionally, to assess the biological effects of PTX-loaded polymers, human non-small cell lung carcinoma (A549) cells were used. Cell viability and cell cycle analysis showed that both polymers were non-toxic to cells. The cytotoxic effect of PTX-loaded PMMA-b-PHEMA-1 on A 549 cells was greater (66.49% cell viability at 5.0 ng mL(-1) PTX) than that of PMMA-b-PHEMA-2 (72.47% cell viability at 5.0 ng mL(-1) PTX), consistent with the drug release experiments.en10.1039/c5py00780ainfo:eu-repo/semantics/closedAccessControlled release of anticancer drug Paclitaxel using nano-structured amphiphilic star-hyperbranched block copolymersArticle63054705477WOS:000358305900014Q1Q1