Hosseini, M. G.Rashidi, N.Mahmoodi, R.Omer, M.2019-10-272019-10-2720180254-05841879-33120254-05841879-3312https://doi.org/10.1016/j.matchemphys.2018.01.018https://hdl.handle.net/11454/30481In this work, graphene supported Pt (Pt/G) and NiPt nanoparticles (NiPt/G) were synthesized by in situ chemical reduction of graphene oxide, Ni+2 and Pt+4 ions. The structural investigation was performed by Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS), Brunauer, Emmett, and Teller (BET) analysis, Field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The electrocatalytic activity of the Pt/G and PtNi/G catalysts toward BH4- oxidation in alkaline media was investigated by means of cyclic voltammetry (CV) and chronoamperometry (CA). The results showed that the catalytic activity of the PtNi/G catalyst toward NaBH4 electrooxidation was higher than that of Pt/G because of the synergistic effect between Pt and Ni. A direct borohydride-hydrogen peroxide fuel cell (DBHPFC) was fabricated using Pt/G (0.5 mg cm(-2)) as cathode catalyst and NiPt/G as anode catalyst. The maximum power density was 64.9 mW cm(-2) at 60 degrees C, 1 M NaBH4 and 2 M H2O2 for anodic loading of 2 mg cm(-2) and 60.4 mW cm(-2) at 60 degrees C,1 M NaBH4 and 2 M H2O2 for anodic loading of 1mg cm(-2). (C) 2018 Elsevier B.V. All rights reserved.en10.1016/j.matchemphys.2018.01.018info:eu-repo/semantics/closedAccessDirect borohydride-hydrogen peroxide fuelcellPt/GPtNi/GPreparation of Pt/G and PtNi/G nanocatalysts with high electrocatalytic activity for borohydride oxidation and investigation of different operation condition on the performance of direct borohydride-hydrogen peroxide fuel cellArticle208207219WOS:000426223800027Q1Q2