Demir, C.Albas, E.Argac, N.De Filippis, V.2019-10-272019-10-2720120092-78720092-7872https://doi.org/10.1080/00927872.2012.689393https://hdl.handle.net/11454/45478Let R be a prime ring, f(X-1, ..., X-n) a multilinear polynomial which is not central-valued on R, and G a nonzero generalized skew derivation of R. Suppose that G(f(x(1), ..., x(n))) is zero or invertible for all x(1), ..., x(n) is an element of R. Then it is proved that R is either a division ring or the ring of all 2 x 2 matrices over a division ring. This result simultaneously generalizes a number of results in the literature.en10.1080/00927872.2012.689393info:eu-repo/semantics/closedAccessExtended density theoremGeneralized skew derivationsPrime ringsSkew derivationsGENERALIZED SKEW DERIVATIONS WITH INVERTIBLE VALUES ON MULTILINEAR POLYNOMIALSArticle401140424059WOS:000309120700006Q4