Turgay N.D.Karaca I.2019-10-262019-10-2620181072947X1072-947Xhttps://doi.org/10.1515/gmj-2018-0076https://hdl.handle.net/11454/16065Let = p {\mathcal{A}=\mathcal{A}-{p}} be the mod p {\mathrm{mod}\,p} Steenrod algebra, where p is a fixed prime and let ' {\mathcal{A}^{\prime}} denote the Bockstein-free part of {\mathcal{A}} at odd primes. Being a connected graded Hopf algebra, {\mathcal{A}} has the canonical conjugation ?. Using this map, we introduce a relationship between the X- and Z-bases of ' {\mathcal{A}^{\prime}}. We show that these bases restrict to give bases to the well-known sub-Hopf algebras ¢ (n - 1) {\mathcal{A}(n-1)}, n ? 1 {n\geq 1}, of ' {\mathcal{A}^{\prime}}. © 2018 Walter de Gruyter GmbH, Berlin/Boston 2018.en10.1515/gmj-2018-0076info:eu-repo/semantics/closedAccessAdem relationsantipodeArnon basisHopf algebramonomial basisSteenrod algebraWall basisThe Arnon bases in the Steenrod algebraArticleQ3